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Particulate Pollution and the Productivity of Pear Packers†

By Tom Chang, Joshua Graff Zivin, Tal Gross, and Matthew Neidell*

We study the effect of outdoor air pollution on the productivity of 
indoor workers at a pear-packing factory. Increases in fine particu-
late matter (PM2.5), a pollutant that readily penetrates indoors, leads 
to significant decreases in productivity, with effects arising at levels 
below air quality standards. In contrast, pollutants that do not travel 
indoors, such as ozone, have little, if any, effect on productivity. This 
effect of outdoor pollution on indoor worker productivity suggests an 
overlooked consequence of pollution. Back-of-the-envelope calcula-
tions suggest the labor savings from nationwide reductions in PM2.5 
generated a sizable fraction of total welfare benefits. (JEL D24, J24, 
L66, Q13, Q51, Q53)

Firms commit sizable resources to a wide range of activities aimed at increasing 
worker productivity, with US workplace training alone accounting for $62 bil-

lion in 2012 (O’Leonard 2013). Accordingly, researchers have examined the effect 
of various activities designed to increase employee effort and output, ranging from 
ergonomics and workspace design to payment contracts and telecommuting (Lazear 
2000; Bloom et al. 2015; Bandiera, Barankay, and Rasul 2005; Pilcher, Nadler, and 
Busch 2002; Levitt and List 2011). One area that has received surprisingly little 
attention by both firms and researchers is pollution within the workplace. Yet, there 
is ample reason to believe that modest levels of pollution may impair performance 
through changes in respiratory, cardiovascular, and cognitive function. Moreover, 
since pollution is largely generated well outside the boundaries of the individual 
firm, the degree to which firms can internalize pollution-related costs is limited. 
This underscores the importance of public policy in shaping outcomes in this area.

In this paper, we present the first evidence on the impacts of outdoor pollution 
on the marginal productivity of indoor workers. This focus is important for two 
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 reasons. First, the majority of output among the richest nations is produced in indoor 
settings, with manufacturing alone accounting for roughly 10–25 percent of gross 
domestic product (GDP).1 Previous evidence on the effect of pollution on the mar-
ginal product of labor has been limited to the agricultural sector (Graff Zivin and 
Neidell 2012), which accounts for a small fraction of national income and thus 
provides limited guidance for policymaking in the developed world where the insti-
tutional capacity for regulating the environment is strongest.2

Second, the pollutant we examine, fine particulate matter (PM2.5), has unique 
properties that make it an especially important pollutant to study. The miniscule size 
of PM2.5—approximately one-thirtieth the width of a human hair—makes it particu-
larly pernicious. It is inhaled deep into the lungs, where it accumulates and impairs 
respiratory function, and can also enter the bloodstream, where it causes cardiovas-
cular complications. Exposure to high levels of PM2.5 causes severe health events, 
such as heart attacks and hospitalizations for asthma, but the degree to which modest 
exposure to PM2.5 affects more subtle but still economically relevant outcomes, like 
productivity, is unknown. Minimizing such effects is greatly complicated by the fact 
that PM2.5 can easily penetrate buildings (Thatcher and Layton 1995, Ozkaynak 
et al. 1996, and Vette et al. 2001). This implies that, unlike many other pollutants, 
the most common form of ex post avoidance behavior—going inside—will be of 
limited value.

We perform our analysis using a unique panel dataset on the daily productivity 
of employees in a pear-packing facility in Northern California. The task of packing 
pears is a tedious one. Each individual piece of fruit is wrapped in paper and then 
packed tightly to ensure that the required quantity of pears fits the box. Importantly, 
workers are paid based on their daily productivity, thereby minimizing moral haz-
ard problems associated with imperfectly observed worker effort (Lazear 2000; Shi 
2010; Bandiera, Barankay, and Rasul 2005).

Our empirical strategy exploits high-frequency fluctuations in ambient PM2.5 
concentrations as measured by a federally administered PM2.5 monitor located near 
the factory. Those fluctuations are plausibly exogenous since they do not result from 
the activity of the factory itself, but rather emanate from sources in the hundreds 
of miles that surround the factory. In addition, there was a massive wildfire several 
hundred miles away that led to elevated PM2.5 levels during one of the packing 
seasons in our data. The fire, along with time-varying transportation and economic 
patterns in the larger cities within the region, generate considerable variation in pol-
lution levels at our study site.

Our analysis reveals a statistically significant, negative impact of PM2.5 on the 
productivity of indoor workers. The negative effect occurs at pollution levels well 
below current National Ambient Air Quality Standards (NAAQS). An increase in 
PM2.5 pollution of 10 micrograms per cubic meter (µg/m3) reduces the productivity 
of workers by $0.41 per hour, approximately 6 percent of average hourly  earnings. 

1 Estimates are from http://data.worldbank.org/. 
2 There is also a small literature that examines productivity indirectly through a focus on the extensive margin 

of labor supply. See Ostro (1983); Hausman, Ostro, and Wise (1984); Graff Zivin and Neidell (2014); Carson et al. 
(2011); Hanna and Oliva (2015). 

http://data.worldbank.org
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These effects first arise when PM2.5 exceeds 15 µg/m3 and increase  thereafter, sug-
gesting a potential threshold effect. These findings are robust to numerous speci-
fication checks. Importantly, we find that labor supply does not respond to PM2.5, 
suggesting our estimates are not contaminated by sample selection bias. Furthermore, 
we also find that outdoor conditions that do not affect the indoor work environment, 
such as solar radiation and ozone, do not impact worker productivity.

We gauge the potential economy-wide importance of these productivity effects 
by applying our estimates to all manufacturing workers throughout the United 
States, the bulk of whom perform tasks with similar physical demands as those 
faced by workers in our study. While this calculation is admittedly speculative given 
the assumptions required for nationwide extrapolation, we find that reductions in 
PM2.5 between 1999 and 2008 generated $19.5 billion in labor cost savings. This 
value represents approximately one-third of the total estimated welfare benefits 
associated with these air quality improvements as captured by capitalization into 
housing prices. If these productivity impacts are not capitalized into housing prices, 
as may well be the case given the novelty of these findings and the localized nature 
of environmental quality capitalization (Bento, Freedman, and Lang 2015, Currie 
et al. 2015), our results suggest that traditional methods for welfare assessment may 
substantially understate the benefits from improvements in environmental quality.

The paper proceeds as follows. The subsequent section describes background 
information on PM2.5, including potential mechanisms for a productivity effect. 
Section II describes the data that we use, and Section III describes our empirical 
strategy. Section IV presents our core results along with a series of robustness 
checks. Section V explores the implications of our empirical results for the US econ-
omy. Section VI concludes.

I. Background on Particulate Matter

Particulate matter (PM) consists of solid and liquid particles in the air that can 
range considerably in size. The regulation of PM has evolved over time. Total 
Suspended Particulates (TSPs), which were first regulated in 1971, consists of par-
ticles less than 100 micrometers in size. In recognition of the growing evidence 
that only particles less than 10 micrometers penetrate into the lungs, regulations 
switched from TSPs to PM10 in 1987.3 Further research demonstrated that the small-
est of these particles, those less than 2.5 micrometers, penetrate deep into the lungs 
and enter the bloodstream. As a result, the Environmental Protection Agency (EPA) 
began regulating PM2.5, in addition to PM10, in 1997.4

The sources of PM2.5 consist of a wide range of both natural and anthropogenic 
sources. Natural sources include volcanoes and wildfires, while anthropogenic 
sources are largely the result of fossil fuel combustion, particularly when gases 
from power plants, industries, and automobiles interact to form PM2.5. Given its 

3 Particles above 10 micrometers are typically expelled by coughing or are trapped in cilia. 
4 Particulates between 2.5 and 10 micrometers are commonly referred to as “coarse particulates,” while those 

less than 2.5 are referred to as “fine particulates.” The air quality standard for PM2.5 was strengthened in 2006. 
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 diminutive size, PM2.5 can remain suspended in the air for extended periods of time 
and can travel hundreds of miles.

Particularly important for our study, PM2.5 can easily enter buildings, with pen-
etration ranging from 70–100 percent (Thatcher and Layton 1995, Ozkaynak et al. 
1996, and Vette et al. 2001). This makes PM2.5 hard to avoid. Unlike other pollut-
ants, which either remain outside or rapidly break down once indoors, going inside 
may do little to reduce one’s exposure to PM2.5. This is particularly the case in a 
poorly insulated, well-ventilated setting, such as the one we study. Indoor pollution 
measures are thus readily affected by outdoor conditions.

A large body of toxicological and epidemiological evidence suggests that expo-
sure to PM2.5 harms health (see EPA 2004 for a comprehensive review). These risks 
arise primarily from changes in pulmonary and cardiovascular functioning (Seaton 
et al. 1995). They may manifest themselves in respiratory episodes, such as asthma 
attacks, and cardiovascular events, such as heart attacks, that lead to hospitalizations 
and mortality (Dockery and Pope 1994, Pope 2000). They also lead to more subtle 
effects, such as changes in blood pressure, irritation in the ear, nose, throat, and 
lungs, and mild headaches (Pope 2000; Ghio, Kim, and Devlin 2000; Auchincloss 
et al. 2008). These milder effects, which arise from exposure to lower levels of 
PM2.5, are generally unobserved by the econometrician—they typically do not lead 
to healthcare encounters—and in some cases may be largely unnoticed by the indi-
vidual experiencing them. Symptoms can arise in as little as a few hours after expo-
sure, particularly for people with existing cardiovascular and respiratory conditions, 
but PM2.5 can also generate effects several days after a period of elevated exposure. 
Particles also accumulate in the lungs, so effects may be triggered after several days 
of elevated exposure.5

These changes in health from PM2.5 exposure can lead to changes in labor mar-
ket outcomes through two channels. First, sickness related to PM2.5 exposure may 
lead to absenteeism, either by missing work entirely or by reducing the number 
of hours worked. Any resulting changes in productivity would therefore be due to 
changes in labor supply. Second, workers may suffer from reduced on-the-job pro-
ductivity (i.e., “presenteeism”) due to the negative health effects of PM2.5 exposure. 
According to worker self-reports, presenteeism decreases US economic output by 
$27 billion each year (Davis et al. 2005). Moreover, since the health effects of PM2.5 
exposure may be so mild as to not even register for the impacted individual, such 
self-reported measures of presenteeism may underestimate the true on-the-job pro-
ductivity effects of pollution. Since pear packing, like much assembly line work, 
is a repetitive task that involves standing on one’s feet nearly all day, these subtle 
changes can plausibly lead to fatigue and related symptoms, thereby lowering the 
marginal product of labor. The goal of our analysis is to estimate the effect of PM2.5 

on the marginal product of labor, independent from any possible effects of PM2.5 on 
labor supply.

5 Less relevant for our analysis, this accumulation in the lungs may also lead to long-term health effects over 
several years, such as chronic bronchitis and lung cancer. 
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II. Data

In order to measure the effect of PM2.5 on productivity, we require both precise 
measures of productivity and precise measures of PM2.5. This section describes how 
we construct a dataset with both of those variables.

In most settings, labor productivity, particularly at the individual level, is unob-
servable to researchers. By focusing on a firm where workers are paid on a piece 
rate basis, our setting offers a unique opportunity to measure worker productivity 
on a daily basis. We focus on a large pear-packing factory in Northern California.6 
The firm, which has since closed, was the largest pear-packing factory in the area. 
The firm contracted with pear growers throughout Northern California. Pears would 
start arriving at the factory early each morning, well before packers arrive. After 
being cleaned and passing through a manual quality assurance check, the pears are 
mechanically sorted by size into large, rotating bins. Packers would then individu-
ally wrap each pear in tissue paper and arrange the pears in boxes.7 The boxes would 
then be sent to retailers around the country.

Packers were expected to work every day that the factory was open and to arrive 
by 7 am, at the start of the day shift. In general, packers would work until all pears 
brought in during the day had been packed. If the workday lasted longer than eight 
hours, then the packers would be paid an overtime rate that was 50 percent higher 
than during regular time.8

The factory provided us with payroll records for the 2001, 2002, and part of the 
2003 packing seasons.9 The packing season lasts from July through November of 
each year. For 2003, our data ends in mid-August when the plant transitioned to a 
new payroll system. This data provides an unbalanced panel of 158 unique workers 
across the three seasons for a total of 7,242 worker-by-day observations. Appendix 
Figure A1 shows the distribution of workdays observed per worker.

The payroll records contain all information that the firm needed in order to calcu-
late paychecks. In particular, packers were paid via a “piece-or-hourly” system. The 
packers earned a piece rate for each box they packed. If their piece rate earnings for 
the day implied an hourly wage below California’s minimum wage, then the pack-
ers were paid an hourly rate for the day. Importantly, productivity is recorded even 
for those paid minimum wage, thus providing a comprehensive measure of daily 
productivity for all workers regardless of where they end up on the wage sched-
ule.10 The dataset includes measures of regular time boxes packed, overtime boxes 

6 Similar to most factories around the globe, the factory is housed in a large structure without HEPA air filtration 
(the only device capable of removing fine PM), so indoor levels of fine PM are likely to closely match outdoor 
levels. 

7 The pears need to be individually wrapped in tissue paper, and then arranged in boxes according to specific 
patterns. While labor intensive, it allowed the factory to ship the pears across the country without damaging the 
produce. 

8 Further details on how the factory operated are described by Chang and Gross (2014). Our description here is 
also based on interviews with the factory’s former CEO. 

9 We have 214 days of output across the 3 growing seasons: 84 in 2001, 104 in 2002, and 26 in 2003. For 2003, 
our data cuts off in mid-August when the plant tried unsuccessfully to transition to a new payroll system. 

10 Since workers may have an incentive to shirk when facing a fixed hourly wage, we directly test this assump-
tion using the methodology outlined by Graff Zivin and Neidell (2012). As described below, we find no such 
evidence of shirking. 
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packed, regular time hours, and overtime hours worked for each packer each day. 
Those variables compose the bulk of our data. Although we do not have explicit 
measures of whether the worker was absent on a given day, we approximate such a 
measure by labeling a worker as not present if other workers worked that day, but 
the particular worker did not.

One complication in measuring productivity is that the workers packed different 
kinds of packages over time, both within and across days. Most packages were stan-
dard, four-fifths bushel boxes, but occasionally workers would pack trays or plastic 
bags for some retailers. Packers were paid a different piece rate for each package, 
with payroll records indicating the type of boxes packed and each packer’s piece 
earnings for each type of box. Given the different types of packaging, we use each 
packer’s total piece rate earnings per hour as our standardized measure of produc-
tivity. Importantly, the type of box being packed on a given day is uncorrelated with 
PM2.5, so this standardization is unlikely to introduce a bias.11 For those workers 
paid minimum wage, we use their implied piece rate wage based on their actual 
productivity.12

Figure 1 plots the variation in productivity as measured by earnings.13 The first 
panel plots the productivity across workers by taking the mean earnings per hour for 
each worker. The second plots the productivity across days by taking the mean earn-
ings of all workers on a given day. Immediately evident is that the variation across 
workers is as large as the variation across days, suggesting a potentially important 
role for day-to-day factors, such as pollution, in determining productivity.

This analysis also requires measures of the environmental shocks faced by the 
packers. The pear-packing factory was located 2.7 miles from a weather and pol-
lution station. This monitor is maintained by the California Air Resources Board, 
and is used for determining compliance with both state and national air quality stan-
dards. Based on the station’s records, we compiled data on the area’s rain fall, tem-
perature, wind speed, dew point, and solar radiation. From the pollution station, we 
compiled data on five pollutants: fine particulate matter (less than 2.5 micrometers 
in diameter), coarse particulate matter (between 2.5 and 10 micrometers in diame-
ter), ozone, carbon monoxide, and nitrogen dioxide.

While nearly all environmental data were collected at the hourly level during 
the time period of our analysis, particulate matter was only measured every six 
days, thus producing a six-day daily average measure.14 This measure has three 

11 We regressed the share of four-fifths boxes packed on a given day on all covariates (described below), and find 
that a 1 unit increase in PM2.5 is associated with a 0.002 decrease in the share of four-fifths boxes, with a t-statistic 
of 0.52. Using a fractional logit model yielded identical results. 

12 While the minimum wage in California was increased during our sample period from $6.25 an hour to $6.75 
an hour effective January 1, 2002, piece rate wages remained constant throughout. Any impacts from this change 
that might have occurred through channels other than the piece-rate wage will be absorbed by the year-specific fixed 
effects that we employ in all econometric specifications (as described below). 

13 We drop from the sample workers who worked fewer than 14 days. We also drop worker-days with implausi-
bly high earnings values, greater than 3 standard deviations above the mean. 

14 PM2.5 was commonly measured every six days after its initial regulation in 1997, but is now routinely mea-
sured on an hourly basis in light of growing evidence of more immediate effects. The six-day measurement was 
accomplished by weighing the amount of airborne pollution of a specific size captured by specialized filters over the 
course of six days. The resulting measure is then divided by six to produce an average daily measure of pollution. 
Thus, a single average daily value is assigned to each of the six days during which a filter was active. The same 
process was used for PM10. 
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 implications for our analysis. First, the grouping of PM2.5 measures can lead to a 
“Moulton effect” (Moulton 1986), so we cluster standard errors on each six-day 
measure of PM2.5. Second, this six-day measure means that our measure of worker 
exposure is based on time both at work and at home, and both indoors and outside. 
As previously mentioned, effects from PM2.5 may arise both immediately and over 
several days. Therefore, it is not possible for us to ascertain which source and what 
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Figure 1. Variation in Productivity across Workers and across Days

note: This figure presents the variation in earnings across workers (panel A) by taking each 
worker’s mean earnings across all time periods, and across days (panel B) by taking each day’s 
mean earnings across all workers.
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timing of exposure over the six-day period can explain the productivity effects we 
find.15 Third, while the factory is reasonably close to the monitor, there may be 
measurement error in our assignment of exposure to workers during nonwork hours. 
If classical, this measurement error will bias our estimates down. Table 1 presents 
summary statistics for the data, both at the individual worker level and at the unit of 
PM2.5 measurement.

III. Empirical Strategy

Our goal is to estimate the effect of fine particulate matter on worker productivity. 
We estimate the following hybrid production function:

(1)  yit = β × f  (PM2.5 ) t   +  X t  ′   γ +  δ t   +  α i   +  ε it    .

15 The toxicological literature suggests that the health effects from PM2.5 generally occur on the same day of 
exposure but can also appear several days later. Unfortunately, we are unable to explore lagged effects of this dimin-
utive length given the six-day measurement of PM2.5. 

Table 1—Sample Statistics

Observations Mean
Standard 
deviation Minimum Maximum

Panel A. Productivity variables
Worked that day 8,222 0.95 0.22 0.00 1.00
Regular time hours per day 7,242 6.93 1.66 0.25 8.50
Regular time earnings per hour 7,242 6.99 2.79 0.04 17.18
Worked overtime that day 7,230 0.28 0.45 0.00 1.00
Overtime hours if overtime that day 2,058 1.80 1.49 0.25 9.75
Overtime hours per day 7,242 0.51 1.13 0.00 9.75
Overtime earnings per hour 2,058 11.50 5.37 0.14 41.40
Penalty 5,677 0.05 0.22 0.00 1.00

Panel B. Environmental variables
PM2.5 (µg/m3) 214 10.42 10.14 1.90 59.70
 PM2.5 <10 142
 PM2.5 10–15 46
 PM2.5 15–20 10
 PM2.5 20–25 5
 PM2.5 >25 11
Ozone (ppb) 214 31.66 9.73 9.88 56.88
Nitrogen dioxide (ppb) 214 9.03 3.75 1.88 23.38
Carbon monoxide (ppm) 214 0.56 0.22 0.18 1.38
PM10–PM2.5 214 10.03 5.51 1.50 36.40
Dewpoint (degrees Fahrenheit) 214 9.36 3.97 −4.00 17.00
Rain (in) 214 0.05 0.22 0 1
Wind speed (mph) 214 4.06 1.26 0.89 8.69
Wind direction (from south) 214 0.51 0.50 0 1
Solar radiation/1,000 (Wh/m2) 214 0.63 0.17 0.07 0.86
Temperature (degrees Fahrenheit) 214 74.81 9.67 54.95 95.00

notes: Productivity variables consist of worker-day pear packer payroll records. Environmental variables consist 
of daily observations.
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The outcome   y it    is the measure of hourly productivity denominated in hourly earn-
ings for worker  i  on date  t .16 The covariate PM2.5 is a daily average of particulate 
matter (based on the six-day measure), and  β  captures the effect of PM2.5 on earn-
ings. We specify PM2.5 linearly but also allow for a nonlinear effect by including a 
series of indicator variables.17 The vector   X t    consists of daily wind speed, a qua-
dratic function of temperature, dew point, rain, solar radiation, and ozone to account 
for other environmental factors that may affect productivity.18 The fixed effects,  δ , 
include day-of-week and year-month indicator variables to account for trends within 
the week and over time, respectively. The term  α  indicates a worker-specific effect. 
Given the nature of the variation in PM2.5, we treat this term as uncorrelated with 
PM2.5 in the baseline specification, though we also perform robustness checks by 
allowing this to be a worker-specific fixed effect. We allow for this worker-specific 
effect by clustering on the worker, which also allows for arbitrary serial correlation 
within a worker.19 We also cluster on each six-day PM2.5 measurement to allow for 
the group assignment of PM2.5 across all workers. Our composite error term,  α + ε ,  
therefore consists of two-way clustering on the worker and PM2.5 measurement 
(Cameron, Gelbach, and Miller 2011).

We face two main obstacles in estimating  β . First, our goal is to estimate the 
effect of pollution on the marginal product of labor, so we need to isolate changes in 
productivity that are not contaminated by changes in labor supply. If hours worked 
responds to changes in pollution, then any estimated effects of pollution on pro-
ductivity could suffer from sample selection bias. In particular, we want to sepa-
rate the direct effects of pollution from workers’ decision to work and their shift 
length. To limit this concern, we focus our analysis on the productivity of workers 
during the regular-time day shift. Overtime hours are more discretionary and can, 
in fact, depend directly on productivity during the regular-time shift.20 While it is 
still possible that labor supply during the regular shift could respond to pollution 
(Hanna and Oliva 2015), the levels of pollution found in this region are remarkably 
low (with one important exception, described below). Therefore, it is unlikely that 
pollution led workers to reduce time at work. Importantly, since we follow workers 
over time and observe hours worked, we explicitly test these assumptions by exam-
ining whether PM2.5 relates to the probability of working and the number of hours 
worked.

16 As noted earlier, for those who fall under the minimum wage portion of the wage schedule, our productivity 
measure corresponds to the earnings implied by the worker’s actual packing rate. 

17 The indicator variables include 10–15 µg/m3, 15–20 µg/m3, 20–25 µg/m3, and above 25 µg/m3, with  
<10 µg/m3 as the reference category. This binned approach is a simplified version of a nonparametric estimator. 
It assumes a uniform effect of temperature within each bin and no overlap across bins, which is tantamount to esti-
mating a step function in pollution. This is a standard approach within the environmental economics literature (see, 
for example, Deschenes and Greenstone 2007 or Graff Zivin and Neidell 2012). 

18 Below, we also include controls for other pollutants as a robustness check, as well as further checks on the 
functional form assumptions about meteorology controls. 

19 Clustering on the worker is comparable to specifying worker random effects, though it invokes fewer assump-
tions about the distribution of the error term. 

20 We nonetheless present evidence on overtime outcomes, noting this limitation. The factory also utilized a 
night shift, which was designed to absorb any unexpected productivity shocks experienced during the regular day 
shift. We unfortunately do not possess data on the night shift. 
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The second challenge involves endogeneity of pollution. In general, pollution 
levels are influenced by local business activity, so an increase in pollution could in 
fact result from higher levels of economic activity. Furthermore, individuals can sort 
into locations based on the amount of pollution in that area, leading to nonrandom 
assignment of pollution. These and other concerns are unlikely to arise in our set-
ting for several reasons. Since PM2.5 travels far and remains suspended in the air for 
extended periods of time, the levels of PM2.5 at the factory are largely driven by fac-
tors outside the firm, including traffic conditions and business activity in  neighboring 
areas, such as Sacramento and the Bay Area, both of which are more than 100 miles 
away.21 In addition, since the demand for the pears comes from retailers around the 
country, and the supply of pears is from farms throughout the region, factory activ-
ity is not likely to be driven by local economic activity. Moreover, our focus on the 
high-frequency variation in pollution limits concerns regarding residential sorting, 
which is largely based on average pollution levels.

Figures 2 and 3 provide some empirical evidence regarding the exogeneity of 
PM2.5. Figure 2, which plots PM2.5 over time, shows that it varies considerably from 
one period to the next. Figure 3, which plots PM2.5 against temperature, shows that 
the variation in PM2.5 is not correlated with temperature, a potentially important 
factor in productivity.22 In fact, PM2.5 is not correlated with any of the environmen-
tal covariates in our analysis. When we regress PM2.5 on all of the environmental 
covariates, the covariates are neither jointly nor individually statistically significant 
at even the 10 percent level (not shown). While we cannot rule out the possibility of 

21 Although not specific to our setting, numerous studies document that the majority of air pollution levels are 
not caused by local sources. See, for example, Ault et al. (2009) and Brook et al. (2007). 

22 We also interviewed the former CEO of the factory and asked how the factory handled environmental shocks. 
He told us that the factory would occasionally pause work during heat waves, but not for pollution-related incidents. 
In fact, he was entirely unaware of a potential relationship between pollution and worker productivity. 
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2002, and 2003 packing seasons. The dotted line corresponds to the one-hour National Ambient 
Air Quality Standards for PM2.5 of 35 µg/m3.
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omitted variables bias, this prima facie evidence, supported by additional evidence 
below, suggests that this threat is minimized in our setting.

Notably, a massive wildfire (the “Biscuit Fire”) several hundred miles away on 
the border between Northern California and Oregon dramatically increased PM2.5 
levels across the region during the study period. The fire started on July 12–15, 
2002, as a result of a series of lightning storms, and was not fully contained until 
December 31, 2002. While pollution levels in our study area were largely unaffected 
by the fire, there was a brief period when emissions from the fire traveled near the 
factory and increased pollution levels considerably. As a result, air quality at our 
study site exceeded national ambient air quality standards for a two-week period in 
August of 2002, as shown in Figure 2.

While the fire provides an exogenous source of variation in PM2.5, one concern 
is that it could have led to behavioral responses that affected worker productivity. If 
some workers altered the time they allocate to labor in response to higher pollution 
levels, estimated effects on the intensive margin of productivity could be contam-
inated by changes in the composition of labor. Fortunately, our analysis of labor 
supply responses, as described above, allows us to directly address this concern.23 
We also note that during the two-week period when national air quality standards 
were violated, air quality alerts were issued to raise public awareness about poten-
tial health risks. Given the gravity of these alerts, worker anxiety and distractions 
could have contributed to productivity impacts on the intensive margin that are not 
purely the result of elevated pollution levels, so that the alerts themselves may have 
affected productivity. For that reason, we present estimates that both include and 

23 Similarly, to the extent that the elevated PM2.5 levels induced sickness, we would detect this in our measures 
of days and hours worked. 
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notes: This figure presents PM2.5 levels for six-day PM measurement intervals versus the aver-
age temperature during those six-day periods. The solid line is the prediction based on a cubic 
series regression of PM2.5 on temperature, with the shaded area indicating the 95 percent confi-
dence intervals. The sample consists of the 2001, 2002, and 2003 packing seasons. We exclude 
two observations during which the air-quality alerts occurred as a result of the Biscuit Fire.
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exclude the time period when fire-related alerts were issued. Furthermore, we model 
PM2.5 with a series of indicator variables to allow for a nonlinear effect of PM2.5. 
This enables us to not only isolate PM2.5 levels during the alert period, but also to 
explore the dose-response relationship at lower levels of PM2.5.

IV. Results

A. Labor supply responses

We begin our analysis by assessing whether labor supply responds to PM2.5. 
Table 2 provides estimates of our regression equation using an indicator variable 
for working or hours worked conditional on working as the dependent variable. We 
begin with our linear-in-PM2.5 model, both with and without those weeks in which 
there was at least one air quality alert as a result of the Biscuit Fire, and then esti-
mate the nonlinear model both with and without the fire-related alert.

Focusing on the probability worked, the first column demonstrates that each 
1-unit increase in PM2.5 has no effect (0.000) on the likelihood of working. Based 

Table 2—The Relationship between PM2.5 and Labor Supply

Dependent variable: Working that day Hours

(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 (µg/m3) 0.000 0.001 −0.001 0.012
[0.000] [0.001] [0.005] [0.027]

PM2.5 10–15 0.022 0.022 0.101 0.123
[0.013] [0.013] [0.191] [0.185]

PM2.5 15–20 0.025 0.030 0.078 0.090
[0.017] [0.016] [0.489] [0.451]

PM2.5 20–25 0.030 0.026 −0.337 −0.194
[0.023] [0.021] [0.240] [0.214]

PM2.5 >25 0.011 −0.249
[0.021] [0.206]

Ozone (ppb) 0.000 0.000 0.000 0.001 −0.008 −0.010 −0.006 −0.009
[0.001] [0.001] [0.001] [0.001] [0.010] [0.011] [0.011] [0.011]

Solar rad./1,000 0.101 0.114 0.107 0.117 0.954 1.278 0.926 1.173
 (Wh/m2) [0.062] [0.063] [0.062] [0.063] [1.185] [1.096] [1.150] [1.063]
Temperature (°F) 0.004 0.007 0.006 0.008 0.231 0.218 0.220 0.204

[0.006] [0.005] [0.005] [0.005] [0.143] [0.139] [0.149] [0.146]
Temperature 0.000 0.000 0.000 0.000 −0.001 −0.001 −0.001 −0.001
 squared [0.000] [0.000] [0.000] [0.000] [0.001] [0.001] [0.001] [0.001]
Mean of dep. var. 0.947 0.949 0.947 0.949 6.934 6.955 6.934 6.955

Includes alert days Yes No Yes No Yes No Yes No
 from Biscuit Fire
r2 0.081 0.079 0.083 0.081 0.353 0.405 0.355 0.406

Observations 8,222 7,729 8,222 7,729 7,242 6,808 7,242 6,808

notes: Standard error based on estimates clustered by date of PM2.5 assignment and worker in brackets. The sam-
ple consists of worker-day observations over the 2001, 2002, and 2003 pear-packing season. Columns 1 through 4 
present marginal effects based on a logit model, and columns 5 through 8 present results from ordinary least squares 
regressions. All regressions include wind speed, a wind direction dummy variable, dew point, a rain dummy vari-
able, day of week dummy variables, and year-month dummy variables. All variables are measured on a daily basis 
except PM2.5, which is measured on a  six-day basis.
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on this estimate we can rule out even very small effects. Using the lower 95 percent 
confidence interval of this estimate, a 1 standard deviation change in PM2.5 leads 
to a miniscule 0.6 percent change in the probability of working. Excluding the two 
weeks with air quality alerts resulting from the Biscuit Fire (column 3) raises this 
estimate to 0.001, though it remains statistically insignificant. Columns 3 and 4 
present the results for the nonlinear model, and here again we find no significant 
impact of pollution on turning up at work.

The last four columns in Table 2 focus on hours worked conditional on working, 
for the same model specifications as before. Column 5 shows that a 1-unit increase 
in PM2.5 leads to a statistically insignificant decrease of 0.002 hours worked. We can 
again rule out very small effects—using the lower 95 percent confidence interval of 
the estimate suggests a 7 minute decline in work time from a 1 standard deviation 
change in PM2.5. Excluding alert weeks (column 6) flips the sign but, again, the 
effect is both small and statistically insignificant. When we allow PM2.5 to enter 
nonlinearly (columns 7 and 8), we continue to find no evidence that hours worked 
responds to PM2.5. This lack of impact on the extensive margin, even during alert 
periods associated with the Biscuit Fire, implies that our estimates of the impact of 
PM2.5 on labor productivity will not be biased by changes in labor force composition.

B. Marginal Product of Labor

As a first pass at establishing the relationship between productivity and PM2.5, 
Figure 4 plots PM2.5 versus earnings. The figure uses data aggregated to the level 
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Figure 4. The Relationship between PM2.5 and Productivity

notes: This figure presents PM2.5 levels for six-day PM measurement intervals versus the aver-
age earnings per hour of pear packers during that time period. The solid line presents the pre-
dictions from a local polynomial regression (Epanechnikov kernel) of productivity on PM2.5 
levels, with the shaded area indicating the 95 percent confidence interval. The sample consists 
of the 2001, 2002, and 2003 packing seasons. We exclude two observations during which air 
quality alerts occurred as a result of the Biscuit Fire.
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of the firm and the six-day PM2.5 measurement period, which is our effective level 
of variation in PM2.5.24 The figure plots unadjusted sample means for the six-day 
periods and a smoothed polynomial fit. Even with no controls, the raw data suggest 
a negative relationship: as PM2.5 levels rise, workers produce less.

Estimates of our regression equation are shown in Table 3, which make up the 
core findings of our analysis. As with labor supply, we present results from four 
specifications, focusing on earnings both in levels and in logs. Turning to levels, 
we find that PM2.5 has a statistically significant, negative effect on earnings per 
hour, shown in column 1. Each additional unit of PM2.5 decreases hourly earnings 
by $0.041, which is 1.5 percent of a standard deviation. Based on the means in 
our data, this translates into an elasticity of 0.059. When we exclude weeks with 
air quality alerts because of the fire, our estimate is no longer statistically signifi-
cant at conventional levels, but it remains of comparable magnitude. Thus, while 
PM2.5 levels during the alerts improve the precision of our estimates, they do not 

24 For ease of exposition, we exclude the Biscuit Fire from this plot. 

Table 3—The Relationship between PM2.5 and Productivity

Dep. variable: Productivity Logarithm of productivity

(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 (µg/m3) −0.041 −0.053 −0.008 −0.007
[0.008] [0.034] [0.001] [0.006]

PM2.5 10–15 −0.062 −0.062 −0.014 −0.012
[0.250] [0.251] [0.041] [0.041]

PM2.5 15–20 −0.533 −0.504 −0.084 −0.079
[0.460] [0.466] [0.073] [0.074]

PM2.5 20–25 −1.001 −0.999 −0.148 −0.144
[0.338] [0.345] [0.065] [0.068]

PM2.5 >25 −1.853 −0.348
[0.313] [0.051]

Ozone (ppb) 0.012 0.013 0.010 0.012 0.004 0.004 0.004 0.004
[0.017] [0.019] [0.018] [0.018] [0.003] [0.004] [0.004] [0.004]

Solar rad./1,000 −0.162 −0.095 −0.075 −0.014 −0.013 0.028 0.013 0.035
 (Wh/m2) [1.334] [1.353] [1.334] [1.341] [0.256] [0.257] [0.256] [0.256]
Temperature (°F) 0.311 0.302 0.301 0.287 0.052 0.049 0.052 0.047

[0.154] [0.155] [0.159] [0.159] [0.025] [0.025] [0.026] [0.026]
Temperature −0.002 −0.002 −0.002 −0.002 −0.000 −0.000 −0.000 −0.000
 squared [0.001] [0.001] [0.001] [0.001] [0.000] [0.000] [0.000] [0.000]
Mean of dep. var. 6.994 6.994 6.955 6.955 1.878 1.878 1.879 1.879

Includes alert days Yes No Yes No Yes No Yes No
 from Biscuit Fire
r2 0.181 0.171 0.181 0.171 0.127 0.123 0.127 0.123

Observations 7,242 6,808 7,242 6,808 7,242 6,808 7,242 6,808

notes: Standard error based on estimates clustered by date of PM2.5 assignment and worker in brackets. The sam-
ple consists of worker-day observations over the 2001, 2002, and 2003 pear-packing season. All columns present 
results from ordinary least squares regressions. All regressions include wind speed, a wind direction dummy vari-
able, dew point, a rain dummy variable, day of week dummy variables, and year-month dummy variables. All vari-
ables are measured on a daily basis except PM2.5, which is measured on a six-day basis. Productivity is measured 
as earnings per hour.
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appear to be biasing them; additional estimates below support this claim. This, 
in turn, implies that any behavioral responses that might have resulted from the 
 fire-related alerts did not affect worker productivity, strengthening our claim that 
the fire during this period provides a useful source of identifying variation in PM2.5 
for our analysis.

The next two columns in Table 3 allow PM2.5 to have a nonlinear effect on pro-
ductivity. This also allows us to isolate the effect of air quality alerts stemming 
from the fire, which only occurred when PM2.5 levels were greater than 25 µg/m3. 
We find that PM2.5 levels between 15–20 µg/m3 decreases earnings by $0.53 per 
hour, though this effect is not statistically significant at conventional levels. When 
PM2.5 reaches 20–25 µg/m3, the effect increases to $1.03 per hour and becomes 
statistically significant. Importantly, this level of PM2.5 is well below the current air 
quality standard of 35 µg/m3. Furthermore, since this bin does not include days with 
air quality alerts, it suggests the results are not caused merely by the Biscuit Fire. 
The effect further increases to $1.88 per hour when PM2.5 exceeds 25 and remains 
statistically significant. Excluding the two weeks with air quality alerts, shown in 
column 4, yields virtually identical results for the three lowest bins, further under-
scoring that our results are not driven solely by alert-induced effects.

These results provide clear evidence of a dose-response relationship between 
PM2.5 and productivity, with a possible threshold at 15–20 µg/m3. To further illus-
trate this, Figure 5 plots the linear and nonlinear estimates. The nonlinear estimates 
suggest a possible threshold around 15 µg/m3 with a roughly linear effect beyond 
the threshold. While we cannot be certain of a threshold at this point—measurement 
error may bias the estimates towards zero—we note that this pattern is roughly con-
sistent with evidence on the PM2.5-mortality relationship, which suggests a possible 
threshold effect at around 20 µg/m3 (Smith et al. 2000).25

The next set of columns in Table 3 present estimates using the logarithm of earn-
ings as our measure of productivity. As with the estimates based on productivity in 
levels, we find a very similar pattern across the four specifications. When we convert 
the estimates using levels into percent by dividing by the mean hourly earnings of 
$6.93 in our sample, the estimates suggest a roughly 0.6 percent effect from a 1 unit 
change in PM2.5. Using the logarithm of earnings, we obtain an estimate of 0.8 per-
cent. Compared to the nonlinear-in-PM2.5 model, the implied percent effect for the 
three highest PM2.5 bins are 0.08, 0.15, and 0.27, respectively, which is also quite 
close to the estimates from the log model of 0.08, 0.15, and 0.35. Hence, our results 
do not appear to be driven by the functional form of the dependent variable.

The coefficients on the other covariates in Table 3 also reveal a pattern of results 
that reinforce the plausibility of our econometric model.26 Environmental condi-
tions vary in the degree to which they influence the indoor work environment, and 
thus productivity should vary accordingly. Ozone, which is a highly volatile pollut-
ant, rapidly breaks down indoors as it interacts with other surfaces. Likewise, solar 

25 It seems quite plausible that a lower threshold exists for productivity, since it is a significantly less harmful 
outcome. 

26 Many of these variables are also likely to be exogenous for similar reasons as PM2.5, allowing us to interpret 
the coefficients as causal (Lu and White 2014). 



156 AMErIcAn EconoMIc JournAL: EconoMIc PoLIcy AugusT 2016

radiation, a measure of available sunlight, is also unlikely to affect indoor conditions 
given the presence of opaque roofing and walls at the factory. Consistent with this, 
we find that the coefficients on ozone and solar radiation are both small and statis-
tically insignificant.

On the other hand, outside temperature directly affects working conditions 
inside the factory, which is not air conditioned, so it may be related to productiv-
ity. Consistent with this, we find a relationship between outside temperature and 
worker productivity. Specifically, in our preferred specification (Table 3, column 3) 
we find that the coefficient on the first-order term for temperature is positive and 
the quadratic term is negative, with both statistically significant. These point esti-
mates imply an inflection point at roughly 72 degrees Fahrenheit. This is consistent 
with a large body of ergonomic evidence that finds that task performance exhib-
its an inverted U-shaped relationship with temperature at a similar inflection point 
(Hancock, Ross, and Szalma 2007).

C. robustness checks

One concern with interpreting our estimate for PM2.5 as a causal effect on fac-
tory production is that PM2.5 could be influencing factory productivity indirectly by 
affecting outdoor workers who harvest the fruit. If harvest production declines with 
PM2.5, this could reduce the queue of pears available for factory workers to pack, 
thereby lowering their productivity indirectly. While we have no way of directly 
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Figure 5. Linear and Nonlinear Effects of PM2.5 on Productivity

note: This figure presents the implied effects of PM2.5 on productivity based on estimates 
reported in Table 3, columns 1 (linear) and 3 (nonlinear).
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testing this since we do not have measures of the pear queue, there are three reasons 
this is unlikely to hinder inference.

First, the pears that arrive at the factory are harvested all around the region.27 
Given the tremendous spatial variation in PM2.5, levels at the farms are likely to 
exhibit low correlation with PM2.5 at the factory. Second, the factory’s operational 
procedures limit the potential effect of harvest productivity on pear-packer produc-
tivity. Since the harvesters start earlier in the day than the packers, the queue is 
unlikely to be empty, thereby shielding the packers from negative shocks in harvest 
productivity. Furthermore, the workers on the overtime and night shifts handle any 
pears left over by the regular shift, so shocks in harvest productivity will be absorbed 
by these later shifts, and not the regular-time day shift on which we focus. Third, we 
can also use our estimate for ozone to directly test for this indirect channel. Ozone 
is likely to affect harvest productivity (Graff Zivin and Neidell 2012), but it does not 
penetrate indoors, so it should not affect packer productivity. A significant effect of 
ozone on factory productivity would therefore suggest indirect effects due to losses 
in harvest productivity. The lack of a significant effect of ozone, shown in Table 3, 
however, suggests that this is not the case. This suggests that our results for PM2.5 
are indeed being driven by direct effects on the productivity of workers inside the 
factory rather than external factors that might be disrupting the queue of fruit to be 
processed.

Table 4 presents a series of additional robustness checks. Column 1 repeats the 
baseline results for the linear-in-PM2.5 models with alert weeks stemming from the 
fire included. Since daily variation in PM2.5 may be driven by other environmental 
conditions that may also affect productivity, it is essential that we control for those 
other environmental conditions adequately. Although we begin with a parsimoni-
ous baseline specification, the next three columns explore alternative assumptions. 
Column 2 completely excludes all of the meteorology variables, while column 3 
controls for temperature more flexibly by including a series of indicator variables, 
and column 4 adds three additional pollutants to the model (nitrogen dioxide, car-
bon monoxide, and coarse PM).28 The effect of PM2.5 on productivity remains sim-
ilar in magnitude across all three models, suggesting environmental confounding is 
limited in our setting.

Since we follow workers over time, we add worker fixed effects to our model 
to control for all time-invariant characteristics of the workers, shown in column 5. 
The estimated effect of PM2.5 is unaffected by this additional control. Although we 
argue that worker exposure to PM2.5 is exogenous, the fact that our estimates are 
unchanged by including fixed effects further supports our contention that worker 
selection is not related to PM2.5.

Recall that while worker productivity is measured every day, PM2.5 is only mea-
sured every six days. Although we perform a daily analysis and cluster standard 
errors on these six-day periods, we also perform an alternative analysis aggregated 

27 The factory packed pears from Contra Costa, El Dorado, Lake, Mendocino, Sacramento, San Joaquin, Solano, 
Yolo counties. Together these counties cover 12,187 square miles and span 6 air basins. 

28 Coarse PM is PM between 2.5 and 10 microns. The controls for temperature here consist of indicator vari-
ables for each 5°F, ranging from less than 60 to over 90, corresponding to the fifth and ninety-fifth percentile of the 
temperature distribution, respectively. 
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to the six-day period. The results from this analysis, reported in column 6, show a 
very similar estimate that remains statistically significant at the 1 percent level.

A complication with payroll at the factory is that earnings per hour are bounded 
from below by the California minimum wage. When the minimum wage binds, work-
ers may shirk since they no longer receive additional compensation per piece. If PM2.5 
lowers productivity such that workers are more likely to be in the minimum wage 
regime, and then shirking further lowers productivity, this will bias our estimates 
(in absolute value) upward. While shirking should be limited in our setting by the 
employer’s ability to observe individual output and easily terminate workers on short-
term contracts, we cannot entirely rule it out. Therefore, to assess the degree to which 
shirking might be happening, we artificially censor earnings at the minimum wage 
for all observations where workers fall into the minimum wage regime, and estimate 
censored regression models (Graff Zivin and Neidell 2012). If shirking increases 
with PM2.5 when workers earn the minimum wage, estimates from censored models 
will be unbiased because the precise measure of productivity for workers earning 
the minimum wage no longer contribute to the point estimate; it only contributes 
to the probability of earning minimum wage. Since parametric censored regression 
models may be biased under misspecification, we estimate  semi-parametric censored 
median regressions (Chernozhukov and Hong 2002). For a point of comparison, we 

Table 4—Robustness Checks

Baseline 
estimates

Exclude 
meteorological 

controls

Control flexibly 
for 

temperature

Control for 
additional 
pollutants

Add worker 
fixed effects

(1) (2) (3) (4) (5)

PM2.5 (µg/m3) −0.041 −0.036 −0.040 −0.039 −0.039
[0.008] [0.009] [0.008] [0.009] [0.016] 

r2 0.181 0.172 0.188 0.184 0.445

Observations 7,242 7,242 7,242 7,242 7,242

Aggregate to 
six-day 

PM-measurement 
periods

Median 
regression

Minimum 
wage 
binds

Censored 
median 

regression
Low-quality 

packing
(6) (7) (8) (9) (10)

PM2.5 (µg/m3) −0.047 −0.044 0.007 −0.040 −0.001 
[0.013] [0.009] [0.001] [0.035] [0.002] 

r2 0.309 — — — 0.161

Observations 1,810 7,242 7,242 5,084 3,046

notes: Standard error based on estimates clustered by date of PM2.5 assignment and worker in brackets. The sam-
ple consists of worker-day observations over the 2001, 2002, and 2003 pear-packing season. All regressions include 
data from the entire sample period, including the two weeks in which air quality alerts were issued due to the 
Biscuit Fire. All regressions include day of week dummy variables and year-month dummy variables. All regres-
sions except column 2 include wind speed, a wind direction dummy variable, dew point, and a rain dummy vari-
able. Column 3 controls for temperature flexibly by including a series of indicator variables for each 5°F. Column 
4 includes nitrogen dioxide, carbon monoxide, and coarse PM. All variables are measured on a daily basis except 
PM2.5, which is measured on a six-day basis. In all regressions except for columns 8 and 10, the dependent variable 
is productivity during the regular-time shift, which is measured in earnings per hour. Column 8 uses whether the 
minimum wage binds as the dependent variable and column 10 uses “low-quality packing” as the dependent vari-
able; both present marginal effects from a logit model.
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first show estimates from a median regression, in column 7, which at −0.044 is quite 
close to our baseline estimates. In column 8, we show that the probability that the 
minimum wage binds is increasing in PM2.5 and statistically significant. The censored 
median result of −0.040, shown in column 9, is slightly smaller than the uncensored 
median estimated, though the difference is not statistically significant. This suggests 
that shirking is unlikely to play a significant role in our analysis.

Workers may also respond to decreased performance by cutting corners when pack-
aging boxes. The firm performs random inspections of boxes as a way of eliminating 
this concern. If the inspectors find a box is packed inappropriately, then the worker 
receives a wage penalty for the day. Such violations occurred in approximately 5 per-
cent of the worker-day observations. We estimate our regression equation using the 
probability of a penalty on a given day as the dependent variable. Shown in column 
8, we find that PM2.5 is not significantly related to the probability of a penalty.

Next, we turn to overtime hours. For the bulk of our analysis, we focused on the 
regular shift when labor supply is more likely to be fixed. For completeness, we 
also measure the relationship between PM2.5 and overtime (OT) outcomes, recog-
nizing that OT hours are more likely to be endogenous. A day with high PM2.5 may 
lower productivity, and the firm may compensate by increasing the demand for OT 
hours, particularly when contracts with retailers specify fixed delivery dates and 
quantities. Alternatively, if a day with high PM2.5 increases worker fatigue, workers 
may be less willing to supply the additional hours and/or firms may be less likely 
to request them. Similarly, higher PM2.5, particularly during the alert periods due to 
the Biscuit Fire, may increase the time allocated to family members who need assis-
tance because of health problems or activity rescheduling, and thus drive down the 
supply of OT hours through increases in the opportunity cost of time.

Appendix Figure A2 shows the distribution in OT hours, conditional of OT hours 
greater than zero, both across workers and across days, similar to Figure A1. It sug-
gests some variation in average overtime by worker, with the typical worker facing 
slightly less than two hours of overtime. There is much less variation across days, 
however, with most days less than two hours. Shown in column 1 of Table 5, we find 
that OT hours decrease as PM2.5 increases: a 1 µg/m3 increase in PM2.5 decreases 
OT hours worked by −0.022 hours. Since OT hours is sensitive to PM2.5, any effects 
on OT productivity is potentially biased by sample selection.

To explore whether selection into overtime induces bias in overtime productivity 
estimates, we examine the effect of PM2.5 on regular-time productivity solely for 
those who work any overtime. If there is selection bias into OT, the effect of PM2.5 
on regular-time productivity should differ for those who work OT versus those who 
do not. Shown in Table 5, column 2, we find that the effect of PM2.5 on regular-time 
productivity for those who work OT is identical to the overall estimate, suggesting 
that any selection into OT is in fact not inducing bias for estimates of the effect of 
PM2.5 on OT productivity.

Given the apparent absence of selection bias into OT, we measure the effects of 
PM2.5 on OT productivity.29 Table 5, column 3 suggests that PM2.5 has a significant, 

29 Although the overtime piece rate is 1.5 times the regular-time piece rate, we divide overtime earnings by 1.5 
to obtain a coefficient that is directly comparable to the regular-time coefficients. 
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 negative effect on productivity. OT productivity decreases by −0.106 for each addi-
tional unit of PM2.5, which is larger than the effect of PM2.5 on productivity during 
regular time. In the last column of Table 5, we also control for regular-time produc-
tivity to account for the fact that overtime productivity may be sensitive to earlier 
productivity. This decreases the estimate to −0.081, though it is still considerably 
larger than the effects on regular-time productivity. One explanation for this pattern 
is that increased fatigue at the end of a day limits workers’ ability to compensate for 
the physiological effects of PM2.5.

Last, we explore heterogeneity in the effects of PM2.5 by estimating quantile 
regression models for each decile of regular-time worker productivity, focusing on 
the log of productivity to account for different baseline levels of productivity across 
workers. Plotted in panel A of Figure 6, which assumes a linear effect for PM2.5, 
we see that the effect on productivity is statistically significant in all deciles. The 
effect is largest for the lowest productivity decile, slightly increases until roughly 
the median level of productivity, and remains flat beyond the median. Importantly, 
this finding suggests that the effect of PM2.5 on worker productivity is not driven by 
a handful of workers who are particularly susceptible to pollution, but rather affects 
the entire distribution of workers. By contrast, panel B plots quantile results for 
ozone, and finds that the effect of ozone on packer productivity is never statistically 
significant, further supporting our contention that the packers are directly affected 
by PM2.5.

V. Implications

A key innovation in our analysis is the focus on PM2.5, which can easily penetrate 
indoors and thus affect a large fraction of the economy. In light of this, it is useful to 
place our findings in a larger context. Given the many uncertainties involved in this 

Table 5—The Relationship between PM2.5 and Overtime Productivity

Overtime 
hours

Regular-time 
productivity

Overtime 
productivity

Overtime 
productivity

(1) (2) (3) (4)

PM2.5 (µg/m3) −0.022 −0.042 −0.106 −0.081
[0.010] [0.020] [0.027] [0.027] 

Include RT productivity — — No Yes
r2 0.175 0.198 0.192 0.337

Observations 7,242 2,058 2,058 2,058

notes: Standard error based on estimates clustered by date of PM2.5 assignment and worker 
in brackets. The sample consists of worker-day observations over the 2001, 2002, and 2003 
pear-packing season. All regressions include data from the entire sample period, including 
the two weeks in which air quality alerts were issued due to the Biscuit Fire. All regressions 
include wind speed, a wind direction dummy variable, dew point, a rain dummy variable,  
day-of-week dummy variables and year-month dummy variables. All variables are measured 
on a daily basis except PM2.5, which is measured on a six-day basis. In columns 1 and 2, the 
dependent variable is the number of overtime hours worked. The dependent variable in col-
umn 3 is  regular-time productivity and in columns 4 and 5 is overtime earnings, both limited to 
the sample of  worker-days for which overtime hours exists. Productivity is measured in earn-
ings per hour, though overtime productivity is deflated by 1.5 to account for time-and-a-half 
overtime pay.
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exercise, we caution upfront that these calculations are meant to be illustrative rather 
than providing a definitive estimate of welfare impacts on a national scale. Recall 
that we estimate that a 1 µg/m3 change in PM2.5 decreases worker productivity by 
roughly 0.6 percent. As a first step, we assess the productivity effects at a national 
level from the changes in PM2.5 concentrations across the United States from 1999 
to 2008.30

30 We focus on the years 1999 and 2008 because, for these two years, we have measures of PM2.5 for all counties 
in the United States. Pollution monitors provide incomplete coverage for the United States, so we use estimates 
inferred from emissions data (Muller 2014). We thank Nick Muller for generously sharing this data. Data from 
pollution monitors led to almost identical estimates to the inferred data for counties where monitors were available. 

Panel A. The linear effect of PM2.5 by quantile
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Panel B. The linear effect of ozone by quantile
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Figure 6. Quantile Regression Results

note: This figure presents the quantile estimates for productivity based on a linear control for 
PM2.5 (panel A) or ozone (panel B).



162 AMErIcAn EconoMIc JournAL: EconoMIc PoLIcy AugusT 2016

We assume that our estimate of the effect of PM2.5 on the marginal product of 
labor applies to all workers in the US manufacturing sector. Although we cannot 
directly verify this assumption, we believe it is a reasonable first-order approxima-
tion based on the following logic. The physiological effects from PM2.5 are similar 
across populations throughout the United States. Since the effects that we estimate 
are likely to be driven by physiological changes that impair workers’ ability to com-
plete physically demanding tasks, occupations with physical requirements similar 
to pear packing are likely to be similarly affected by PM2.5. Hence, our assumption 
rests on the idea that all workers in manufacturing are, on average, performing tasks 
that are similar to pear packing in the degree to which they are physically demand-
ing. While the assumption may not hold for some workers in manufacturing, such 
as supervisors and office workers, it is, on the other hand, likely to apply to many 
affected but excluded workers in other industries, such as construction workers and 
most forms of outdoor work.31

As shown in Appendix Figure A3, there is considerable variation in county-level 
changes in fine particulate matter pollution over this time period, with a national 
average decline of 2.79 µg/m3. We merge this pollution data with county-level 
mean manufacturing earnings from the Bureau of Labor Statistics in 2000. We cal-
culate that the decrease in PM2.5 led to an aggregate labor savings of $19.5 billion. 
This represents a 2.67 percent increase in manufacturing earnings, which translates 
to a 0.5 percent increase in economy-wide earnings.

While those numbers are large in absolute terms, it is instructive to compare them 
to the other welfare benefits associated with reducing PM2.5. In addition to affecting 
mortality and several dimensions of morbidity, pollution also leads to numerous 
behavioral responses to limit exposure (Harrington and Portney 1987; Neidell 2009; 
Deschenes, Greenstone, and Shapiro 2012; Graff Zivin and Neidell 2013). Given 
the disparate range of health and behavioral effects that must be considered, the 
most frequently used method for quantifying the overall welfare benefits of pollu-
tion reduction is to use the hedonic price method by studying the effect of PM2.5 on 
housing values. Under the assumption of complete and transparent markets, all of 
the effects of PM2.5 should be capitalized into house prices (Rosen 1974).

While we are unaware of any studies that link PM2.5 and housing values, Bento, 
Freedman, and Lang (2013) have estimated this relationship for PM10 , which is 
closely related to PM2.5. Exploiting plausibly exogenous changes in PM10 induced by 
the Clean Air Act, they find that a 4.7 unit decrease in PM10 increases housing values 
by $43.9 billion. PM2.5 is the subset of PM10 that is smaller than 2.5 microns,32 with 
evidence suggesting that roughly 60 percent of PM10 concentrations in the United 
States are comprised of PM2.5 (Eldred, Cahill, and Flocchini 1997).33 Applying 
this number to the estimates from Bento, Freedman, and Lang (2015) suggests that 

31 There is also growing evidence that PM2.5 affects cognitive performance (Lavy, Ebenstein, and Roth 2014), 
which implies potential productivity impacts across high-skilled workers as well. 

32 Recall that “coarse” particulate matter refers to those particles between 2.5 and 10 microns in diameter, 
e.g., PM10 measures net of PM2.5. 

33 This number is calculated by averaging concentrations across study sites and seasons for which elemental 
data were available as reported in table 3 of Eldred, Cahill, and Flocchini (1997). 
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the changes in PM2.5 from 1999–2008 increased housing values by approximately 
$57.3 billion (in year 2000 dollars).34

Thus, if we assume that our estimated labor impacts are capitalized into housing 
prices, they account for approximately 34 percent of the total benefits associated with 
reductions in PM2.5 pollution. That said, there is reason to believe that these labor 
impacts may not be fully reflected in housing values. The average American lives 
12 miles from their workplace (Santos et al. 2011), and the large spatial variation in 
pollution implies that pollution exposure faced at work may be quite different from 
that faced at home. Yet, empirical studies suggest that the impact of pollution on 
housing values is quite localized. Indeed, Bento, Freedman, and Lang (2013) finds 
that housing values more than five miles from a pollution monitor are unaffected by 
air quality levels. Currie et al. (2015) find a similar result for air toxins, with housing 
impacts limited to a 0.5 mile radius around an emitting factory. Moreover, this paper 
is the first to document indoor productivity effects from pollution, and thus it seems 
quite plausible that individuals are unaware of such impacts when they determine 
their willingness to pay for residential property. As such, it appears likely that much, 
if not all, of our estimated impacts on labor productivity are overlooked by hedonic 
valuation approaches. In that case, housing price based estimates understate the total 
benefits from reducing PM2.5 by more than 25 percent.

It is important to recognize that our economy-wide calculations extrapolate 
from our setting to all US manufacturing. In practice, the effect of pollution on a 
pear-packing facility in Northern California may be very different from the effect 
of pollution on a car manufacturer in Michigan or a steel mill in the Ohio River 
Valley. Moreover, the composition of PM2.5 differs across regions, and the differen-
tial health effects by particle type are not well understood (Bell et al. 2007). That 
said, research in this area has found that the vast majority of buildings are quite 
porous to fine PM (Thatcher and Layton 1995), and air conditioning, in particular, 
does not filter PM2.5 (Batterman et al. 2012). In fact, the only device that can remove 
PM2.5 is a high-efficiency particulate arrestance (HEPA) filter, and HEPA filters are 
uncommon in manufacturing, used mainly for specialized manufacturing, such as 
microchip production, that requires a clean room to limit damage to the production 
process itself (Whyte 1999). Thus, our back-of-the-envelope figures should be inter-
preted with caution, providing a rough estimate for aggregate impacts in the absence 
of additional knowledge about how productivity impacts may vary across settings.

VI. Conclusion

In this paper, we analyze the relationship between PM2.5, a ubiquitous pollut-
ant that penetrates into indoor settings, and individual-level productivity inside a 
pear-packing factory. We find that a 10-unit change in PM2.5 significantly decreases 
worker productivity by roughly 6 percent. Importantly, PM2.5 begins to affect 

34 We arrive at the estimate of $57.3 billion as follows. We divide the $43.9 billion estimate from Bento, 
Freedman, and Lang (2013) by the 4.7 unit decline in PM10 to obtain the value per unit change in PM10. We then 
multiply it by 0.6 to convert it to a unit change in PM2.5. We then multiply by 2.79 to estimate the implied housing 
change associated with improvements in PM2.5 from 1999–2008. Lastly, we adjust for inflation by multiplying by 
the consumer price index growth from 1990 to 2000 of 1.32. 
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 productivity at levels well below current US air quality standards. These findings 
build upon extensive laboratory and epidemiological evidence on the relationship 
between PM2.5 and individual health outcomes by providing the first evidence that 
outdoor environmental pollution can adversely affect the productivity of indoor 
workers.

Since these productivity effects also affect firm profits, firms may internalize 
some of these costs by reducing worker exposure to PM2.5. While the installation of 
sophisticated filtration systems has the potential to remove PM2.5 from the air, cur-
rent technology is limited in its ability to fully remove PM2.5, particularly the small-
est and most pernicious particulates (Mostofi et al. 2010; Shi, Ekberg, and Langer 
2013). Moreover, since PM2.5 accumulates in the body over several days, exposure 
away from the office, where workers spend the majority of their time, cannot be 
controlled via investments in these technologies. Reductions of source emissions 
are also a challenge for the private sector since most occur outside the boundary of 
the firm, and the multitude of emitters introduces a coordination problem that limits 
the scope for Coasean bargains to reduce emissions. Thus, productivity-enhancing 
investments in this context are likely to be more efficient through publicly coordi-
nated reductions in contamination rather than unilateral efforts by firms.

The determination of optimal regulatory standards requires policymakers to bal-
ance the costs and benefits of additional regulations. Our results indicate that pol-
lution has an important cost beyond the health effects and quality of life issues 
typically considered in the calculus of both academics and policymakers. Our find-
ings also suggest that pollution may have a complex effect on the overall economy. 
Typically, pollution is a necessary condition for production, and thus for economic 
growth. But our findings suggest that pollution lowers labor productivity, and labor 
productivity is itself an important determinant of economic growth. Indeed, applying 
our estimated effects to all of US manufacturing suggests that the modest decline in 
PM2.5 pollution from 1999 to 2008 generated nearly $20 billion in benefits. In light 
of growing evidence that PM2.5 exposure can affect cognitive performance (Lavy, 
Ebenstein, and Roth 2014), the aggregate productivity benefits may have, in fact, 
been substantially larger. The impacts of fine particulate matter pollution on high 
skilled labor and human capital accumulation are fruitful areas for future research.
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Appendix
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 Figure A1. Variation in Observations per Worker

notes: This figure presents the distribution of workdays observed per worker. There are 
158 unique workers in the sample across the 2001, 2002, and 2003 packing seasons.
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Figure A2. Variation in Overtime Hours across Workers and across Days

note: This figure presents the variation in overtime hours across workers (panel A) by taking 
each worker’s mean overtime hours across all time periods, and across days (panel B) by tak-
ing each day’s mean overtime hours across all workers, conditional on positive overtime hours.
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